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Abstract: This article describes how DFT calculations were used to determine the hardest and softest stable
crystal among a list of 23 quaternary crystals. First, input files were prepared for Quantum Espresso (QE)
and convergence tests were performed to obtain the optimal trade-off between precision and calculation time.
Subsequently, the elastic constants were calculated in order to calculate the hardness of the crystals. Finally, the
obtained values were compared and the softest and hardest crystal was determined.

Keywords: DFT, elastic constants, generalized Hookes’s law

I. INTRODUCTION

Quaternary alloys have the following structure:
A2BCD4. The element A is Na, K, Rb or Cs. These
elements are situated in group 1 of the periodic table. B
and C can be picked from the 12 elements between Al, P,
Tl and Bi. Element D is S, Se, Te or Po, those elements
can be found in group 16 of the periodic table. In total,
2304 crystals can be built. However, only 23 were found
to be stable according to DFT calculations [1]. Table
I contains the 23 crystals that will be used for the DFT
calculations. In Appendix A a visualization of the crystal
can be seen.

Cs2BaGeSe4 Rb2BaSiSe4 K2BaSiSe4
Cs2BaSnSe4 Rb2CaSiSe4 K2CaSiSe4
Cs2CaGeSe4 Rb2CsPSe4 K2MgSiSe4
Cs2CaSnSe4 Rb2KPSe4 K2RbSiSe4
Cs2MgGeSe4 Rb2KSiSe4 K2SrSiSe4
Cs2MgSnSe4 Rb2MgSiSe4
Cs2RbAsSe4 Rb2MgSiTe4
Cs2SrGeSe4 Rb2NaPSe4
Cs2SrSnSe4 Rb2SrSiSe4

TABLE I. 23 stable quaternary crystals

II. PROCEDURE

First the cif files of the crystals were constructed. From
this an input file could be made for QE. The next step
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was finding the k-mesh and basis set for the wave func-
tion (ecutwfc) and the density (ecutrho) for each crystal.
It is of great importance to use correct cutoff parameters
in order to be confident of the correctness of the calcu-
lated values, i.e. to make sure that the effective values
are obtained and not random numerical noise. These
parameters can be obtained by performing convergence
tests. Important here is the trade-off between calculation
precision and calculation time.
The following step was optimizing the geometry of each
crystal in order to be able to start from a perfectly re-
laxed crystal.
Next, the elastic constants of the crystals were deter-
mined. These can be used to calculate other properties
of the bulk crystals.
All these steps and the results are discussed in more de-
tail in the next sections.

A. Convergence testing

The first step was determining the k-mesh. Like men-
tioned before, the k-mesh will be determined depending
on the precision and calculation time. To know whether
the values converge or not, the value of the hydrostatic
pressure was observed for increasing values for the k-
mesh. An example of convergence testing can be seen in
Table II. It shows how the value of the hydrostatic pres-
sure converges and how the calculation time increases for
a more dense mesh. A 3x3x3 k-mesh was chosen for the
calculations since convergence was already reached and
the calculation time was still acceptable.
The same procedure was followed for ecutwfc and
ecutrho. Generally ecutwfc=40 Ry was sufficient. Some
crystals needed ecutwfc=80 Ry. Ecutrho was determined
by varying the ratio between ecutwfc and ecutrho. A fac-
tor of 4 was sufficient but, since the calculation time for
factor 5 didn’t increase much compared to factor 4, fac-
tor 5 was preferred. This resulted in ecutrho=200 Ry
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or ecutrho=400 Ry. Finally the crystals were geometry
optimized to obtain a perfectly relaxed crystal to start
with.

k-mesh Hydrostatic pressure (kbar) Calculation time (s)
1x1x1 -26.92 165
3x3x3 -37.37 750
5x5x5 -37.36 2254
7x7x7 -37.36 4140
9x9x9 -37.36 6540

TABLE II. Convergence test: k-mesh

B. Elastic properties

Defining the elastic behaviour is the goal for this
project. The elastic constants were obtained using the
stress tensor procedure, by calculating the stiffness ten-
sor. First, 6 independent deformations are applied to
the unit cell (for all crystals studied in this project, the
same deformations were used). This is done by multi-
plying the deformation matrix with the standard root
tensor of the undeformed cell. These new calculated unit
cell parameters are used to perform a relax-calculation,
in order to obtain the stress tensors of the deformed unit
cell with optimized positions for the atoms. Afterwards
the stress-strain relations are written for each of these
6 deformations and this way Hooke’s generealized law is
obtained:

The strain tensor is obtained via the definition of the
Green-Lagrange strain tensor, where F is the deforma-
tion matrix.

By applying matrix manipulations, the stiffness tensor is
obtained. The obtained stiffness tensor for K2MgSiSe4 is
shown below in GPa:


34.67 9.13 10.46 4.63 7.45 8.50
9.08 34.71 10.46 5.55 8.50 7.45
11.71 11.74 75.36 0.96 0.81 0.83

0 0 0 9.33 0 0
0 0 0 0 11.74 0
0 0 0 0 0 11.75


The stiffness tensor for all crystals can be found in Ap-
pendix B. Normally, the upper right and left block of the

6x6 matrix should be symmetric, but this isn’t the case
for any of our crystals. Some of them resemble almost
symmetry, some of them don’t. The correspondence to
symmetry can give a good indication on how reliable fur-
ther results will be.

III. RESULTS

The stiffness tensor is the gateway to obtain a set of
elastic moduli. In the scope of this project, the bulk
modulus (K) is first calculated directly from the stiffness
tensor and, after calculating the shear modulus (G), the
Young’s modulus (E) and the Poisson constant (ν), also
the micro-hardness could be calculated (Hv). The exact
formulas can be found in Appendix C, based on [2]. Both
parameters were calculated according to two formalisms,
the Voigt (upper limit) and Reuss (lower limit) model.

A. Bulk modulus

In Appendix D the bulk moduli of all crystals are vi-
sualized. Both the Voigt and Reuss bulk moduli are
shown. To be able to compare the crystals, the mean bulk
modulus is also depicted. Cs2BaGeSe4 and Rb2SrSiSe4
show unreliable results. When observing the mean val-
ues, Cs2CaSnSe4 has the highest bulk modulus.

B. Micro-hardness

A visualization of the calculated micro-hardnesses can
be found in Appendix D. For each crystal, the Voigt and
Reuss micro-hardness are plotted. To compare the differ-
ent crystals in a reliable way, the mean of the Voigt and
Reuss micro-hardness is also plotted. Two crystals show
unreliable data, Cs2CaSnSe4 and Cs2MgGeSe4. The
Voigt and Reuss calculated micro-hardness for the two
crystals differ respectively with 5 and 40 Hv. Based on
the mean values, Rb2MgSiTe4 shows the highest micro-
hardness. All crystals containing Mg show an increased
hardness. The softest crystal, based on the mean value,
is Cs2BaGeSe4. Physically interpreting this data is be-
yond the scope of this project.
Some research papers claim that the bulk modulus and
the hardness are directly correlated: a material with a
high bulk modulus generally has a high hardness [3]. In
this project, however, this is certainly not the case. This
correlation is indeed found to be not always correct [4].
The previous paper also states that the correlation be-
tween the shear modulus and the hardness is supposed
to be better. Experimental values for the crystals are
needed to confirm this statement.
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IV. CONCLUSION

After dealing with start-up problems for the DFT cal-
culations, due to incorrect pseudo-potentials, calcula-
tions went smoothly.

1. The calculated crystals(max. B= 60 GPa and Hv=
2) are generally soft for example in comparison with
steel (B= 160 GPa, Hv= 10.61).[5]

2. For some crystals, unreliable data is obtained. The
reason could be the choice of 3x3x3 k-mesh, where
a 7x7x7 would be more precise in the case of these
crystals. In the scope and time period of this
project, achieving unreliable data for only a few
crystals was acceptable.

3. Supposedly when the values of the cutoff parame-
ters, in general, would be increased, more precise
and accurate results for the hardness could be ob-
tained. Only then a clear conclusion about the cor-
relation between the bulk modulus and the micro-
hardness can be made.
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Appendices
A. APPENDIX A: VISUALISATION OF THE

UNIT CELL

B. APPENDIX B: STRESS TENSORS IN GPA

K2BaSiSe4 =


43.25 9.22 15.61 0.87 1.69 0.50
9.22 43.25 48.94 3.40 0.52 1.68
1.38 1.38 66.87 0.49 2.65 2.61

0 0 0 4.38 0 0
0 0 0 0 3.75 0
0 0 0 0 0 3.67



K2CaSiSe4 =


36.95 6.65 9.67 2.56 2.44 5.03
6.55 37.05 9.67 1.58 4.93 2.57
12.80 12.89 64.37 0.46 0.53 0.12

0 0 0 9.33 0 0
0 0 0 0 11.74 0
0 0 0 0 0 11.75



K2RbSiSe4 =


29.28 6.98 10.71 1.31 2.44 0.85
6.98 29.28 10.71 0.80 1.31 1.11
2.86 2.86 27.71 4.68 2.86 2.40

0 0 0 4.86 0 0
0 0 0 0 4.04 0
0 0 0 0 0 3.94



Rb2SrSiSe4 =


32.19 78.16 57.68 23.88 23.24 23.67
63.95 76.65 57.68 23.67 22.67 22.81
51.17 62.85 0.91 20.14 18.09 20.78

0 0 0 17.13 0 0
0 0 0 0 3.79 0
0 0 0 0 0 1.77



Rb2NaPSe4 =


33.18 2.58 9.07 0.67 0.67 1.04
11.87 3.89 8.81 1.11 0.56 1.46
8.23 4.14 38.20 1.16 1.11 0.94

0 0 0 0.48 0 0
0 0 0 0 0.50 0
0 0 0 0 0 3.66



Rb2MgSiTe4 =


23.18 4.43 4.40 1.47 1.16 1.67
7.72 4.44 4.40 1.74 1.59 1.61
6.61 1.39 45.59 0.82 1.20 0.87

0 0 0 7.71 0 0
0 0 0 0 24.07 0
0 0 0 0 0 6.91



Rb2MgSiSe4 =


31.18 8.20 12.02 2.27 1.22 1.09
8.20 31.21 12.02 2.86 0.91 0.80
4.42 4.42 71.84 1.11 0.94 0.86
0.00 0.00 0.00 9.70 0.00 0.00
0.00 0.00 0.00 0.00 2.18 0.00
0.00 0.00 0.00 0.00 0.00 7.11



Rb2KSiSe4 =


27.27 3.04 8.43 1.18 1.53 1.29
7.30 3.40 8.43 1.03 1.33 0.57
14.75 4.84 37.53 1.59 1.56 1.38
0.00 0.00 0.00 1.60 0.00 0.00
0.00 0.00 0.00 0.00 2.21 0.00
0.00 0.00 0.00 0.00 0.00 1.92



Rb2BaSiSe4 =


36.17 3.81 13.00 0.53 0.07 0.42
3.92 36.04 13.00 0.06 0.52 0.71
27.08 26.96 73.08 4.85 4.85 4.50
0.00 0.00 0.00 3.25 0.00 0.00
0.00 0.00 0.00 0.00 3.25 0.00
0.00 0.00 0.00 0.00 0.00 4.80



Rb2CaSiSe4 =


39.26 10.11 14.11 0.26 0.01 0.38
10.11 39.26 14.11 0.00 0.26 0.44
47.70 47.69 99.45 11.08 11.09 11.40
0.00 0.00 0.00 3.68 0.00 0.00
0.00 0.00 0.00 0.00 3.68 0.00
0.00 0.00 0.00 0.00 0.00 1.18



Rb2CsPSe4 =


32.93 20.30 11.94 0.12 0.59 0.54
9.10 44.44 11.94 0.44 0.27 0.29
2.44 13.69 27.97 1.78 1.63 1.83
0.00 0.00 0.00 3.11 0.00 0.00
0.00 0.00 0.00 0.00 3.13 0.00
0.00 0.00 0.00 0.00 0.00 4.31



Rb2KPSe4 =


32.76 8.26 8.88 0.58 0.10 0.63
8.26 32.76 8.88 0.10 0.58 0.78
20.98 20.98 47.75 4.02 4.02 3.53
0.00 0.00 0.00 3.37 0.00 0.00
0.00 0.00 0.00 0.00 3.37 0.00
0.00 0.00 0.00 0.00 0.00 2.38


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K2SrSiSe4 =


47.02 11.58 16.67 0.36 0.81 0.01
11.59 47.00 16.67 1.10 0.02 0.14
52.36 52.34 100.28 11.53 11.15 10.70
0.00 0.00 0.00 1.70 0.00 0.00
0.00 0.00 0.00 0.00 2.64 0.00
0.00 0.00 0.00 0.00 0.00 2.23



Cs2MgGeSe4 =


8.42 12.57 16.60 6.22 6.96 7.83
12.57 8.40 16.60 6.96 6.22 7.49
1.24 1.24 61.17 0.43 0.43 2.62
0.00 0.00 0.00 6.99 0.00 0.00
0.00 0.00 0.00 0.00 6.99 0.00
0.00 0.00 0.00 0.00 0.00 5.06



Cs2MgSnSe4 =


3.50 25.63 28.38 12.69 13.21 12.98
25.63 3.50 28.38 13.22 12.69 12.60
0.29 0.29 57.68 3.05 3.05 3.77
0.00 0.00 0.00 7.92 0.00 0.00
0.00 0.00 0.00 0.00 7.91 0.00
0.00 0.00 0.00 0.00 0.00 5.14



Cs2RbAsSe4 =


20.80 1.89 1.42 1.82 1.92 1.85
1.89 20.80 1.42 1.92 1.82 1.15
8.14 8.14 28.57 1.01 1.01 0.52
0.00 0.00 0.00 2.87 0.00 0.00
0.00 0.00 0.00 0.00 2.87 0.00
0.00 0.00 0.00 0.00 0.00 2.21



Cs2SrGeSe4 =


18.49 6.00 3.10 5.18 5.22 4.98
6.00 18.49 3.10 5.22 5.18 4.20
9.72 9.70 52.43 0.44 0.44 0.71
0.00 0.00 0.00 1.85 0.00 0.00
0.00 0.00 0.00 0.00 1.85 0.00
0.00 0.00 0.00 0.00 0.00 0.58



Cs2SrSnSe4 =


4.03 21.24 18.38 10.20 10.30 10.26
21.24 4.03 18.38 10.31 10.18 9.57
4.08 4.07 46.85 2.58 2.56 2.85
0.00 0.00 0.00 3.12 0.00 0.00
0.00 0.00 0.00 0.00 3.12 0.00
0.00 0.00 0.00 0.00 0.00 1.21



Cs2BaGeSe4 =


34.33 9.65 14.13 0.06 0.39 0.72
9.65 34.33 14.13 0.39 0.06 0.56
13.73 13.63 5.17 0.10 0.11 0.16
0.00 0.00 0.00 1.23 0.00 0.00
0.00 0.00 0.00 0.00 1.23 0.00
0.00 0.00 0.00 0.00 0.00 2.83



Cs2BaSnSe4 =


17.91 7.56 3.48 5.49 5.17 5.04
7.56 17.91 3.48 5.17 5.49 5.12
7.96 7.96 46.87 1.89 1.89 1.62
0.00 0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 0.00 0.13 0.00
0.00 0.00 0.00 0.00 0.00 0.77



Cs2CaGeSe4 =


31.54 0.90 9.45 0.85 0.97 0.41
0.90 31.54 9.45 0.97 0.85 0.15
10.75 10.75 58.31 0.29 0.29 0.06
0.00 0.00 0.00 3.90 0.00 0.00
0.00 0.00 0.00 0.00 3.90 0.00
0.00 0.00 0.00 0.00 0.00 0.23



Cs2CaSnSe4 =


104.88 7.46 12.04 9.55 9.11 5.94
7.46 104.88 12.04 9.11 9.55 6.85
19.70 19.70 238.81 5.16 5.16 4.33
0.00 0.00 0.00 0.17 0.00 0.00
0.00 0.00 0.00 0.00 16.67 0.00
0.00 0.00 0.00 0.00 0.00 8.07


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C. APPENDIX C: EQUATIONS OF ELASTIC MODULI
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D. APPENDIX D: RESULTS OF CALCULATIONS


