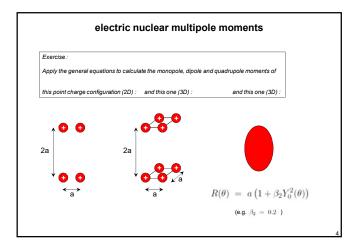
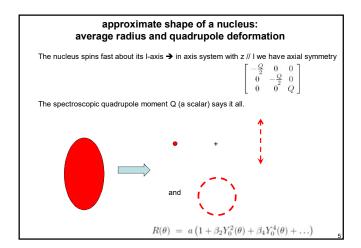
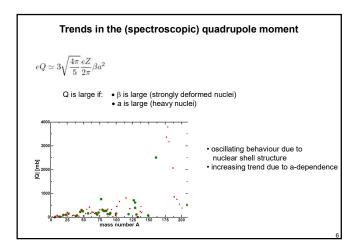

nuclear electric multipole moments


www. hyperfinecourse .org



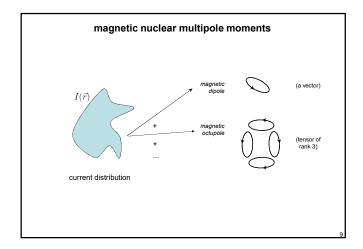




Trends in the mean square nuclear radius

					/ \. /	1110	$3 A^{0.3}$	²⁹⁴ i			
(just a snippet) L Angeli I Atomic Data and Nuclear Data Tables 87 (2004) 185-206 19											
able 1 (continued)						Table 1 (continued)					
Ζ	El	A	R (fm)	$\Delta_{\rm tot} R$ (fm)	$\Delta_{\rm rel} R$ (fm)	Z	El	A	R (fm)	$\Delta_{\rm sot} R$ (fm)	$\Delta_{nl}R$ (fm)
		112	4.5950	.0020				126	4,7703	.0048	.0007
		113	4,6006	.0020	.00002			128	4.7755	.0048	.0004
		114	4.6137	.0019				129	4.7762	.0047	.0001
		115	4.6170	.0054	.0049			130	4.7832	.0046	.0003
		116	4.6284	.0021	.00002			131	4.7812	.0046	.0001
		118	4.6316	.0037	.0024			132	4,7866	.0047	.0002
		120	4.6379	.0059	.0045			134	4.7921	.0047	.0001
49	In	104	4.5168	.0119	.0016			136	4,7991	.0047	
		105	4.5298	.0105	.0015			137	4.8143	.0048	.0003
		106	4.5364	.0096	.0013			138	4.8359	.0054	.0003
		107	4.5487	.0082	.0011			139	4.8511	.0060	,0006
		108	4.5566	.0071	.0005			140	4.8694	.0067	.0002
		109	4.5684	.0061	.0008			141	4.8845	.0075	.0004
		110	4.5742	.0056	.0009			142	4.9016	.0086	.0009
		111	4.5859	.0043	.0005			143	4.9137	.0092	.0004
		112	4.5911	.0039	.0007			144	4.9300	.0102	.0005
		113	4.6018	.0025	.00003			146	4.9575	.0119	.0005
		114	4,6066	.0027	.0002	55	Cs	118	4.7834	.0092	.0002
		115	4.6169	.0024				119	4.7898	.0090	.0006

magnetic nuclear multipole moments


What we discussed so far is the scalar potential due to a static charge distribution, developed into multipole components.

 A similar story applies to the vector potential due to a static current distribution, which can be developed into multipole components as well (mathematically a bit more involved).

The parity of these magnetic nuclear multipole moments is different: odd terms survive.

• The first non-zero term is the magnetic dipole moment (a vector).

 ${\boldsymbol{\cdot}}$ The second non-zero is the magnetic octupole moment (a tensor of rank 3).

